THEORY OF PLANE FLOWS OF A READILY CONDUCTING
PLASMA IN A PIPE

A.I. Morosov and A. P. Shubin

Simplified equations are obtained describing slowly changing plane flows of a readily con-
ducting quasineutral inviscid plasma in a pipe. The practically interesting case of flow

in a channel with solid metal ideally conducting walls (electrodes) is analyzed. When the
gas pressure is large by comparison with the magnetic pressure (8 >1), the field and
current distribution is determined by gas dynamic factors, and the solid electrodes perturb
the longitudinal electric field in a "skin" of the flow, symmetrically on the two sides of the
flow, leading to attenuation of the longitudinal electric field near the input to the pipe; we
also consider problems in the motion of the plasma under ideal and under poor conductivity.
In the converse limiting case (< 1), it is shown that as the motion of the plasma in the pipe
accelerates near the anode, there is observed an increase in the intensity of the electric
field which is sharply inhomogeneous in the transverse direction. The possibility of the
plasma breaking away from the anode (the limiting regime) is indicated, this being accom-
panied by a divergence between the electron velocity and the velocity of the ions. A crite-
rion is obtained for the breakaway of the plasma, and its possible connection with the oc-
currence of pre-anode "explosions" is noted. It is shown that for g« 1, Joule losses are
small by comparison with the power in the charge and the magnitude of the losses is in-
dependent of the conductivity of the plasma,

Many theoretical and experimental papers have been devoted to the standard coaxial plasma acceler-
ator with a special magnetic field (i.e., a field created exclusively by the electric current flowing through
the accelerator); nevertheless up to this time there is no proper understanding of the processes in sys-
tems of such a kind. This can be explained both by the variety of the processes and by their complexity
and their interdependence. Even if we leave on one side questions connected with the ionization of the
plasma and its friction at the electrodes -- the walls of the accelerating pipe —~ and consider the plasma to
be fully ionized and inviscid, there remains the very complex problem of the construction of the pattern of
the plasma flow subject to various boundary conditions at the electrodes. The essence of this problem
(which occurs for the most varied flows of a plasma near the walls) lies in the difficulty of reconciling the
electromagnetic fields in the plasma flow with the fields at the electrodes* since a longitudinal electric
field (cf. [1]) is necessary for the electromagnetic acceleration of a readily conducting plasma (i.e., to ac-
celerate the ions while preserving quasineutrality), Obviously, the problem of reconciling the fields in the
flow and at the electrodes does not arise if the construction of the electrodes does not impose any restric-
tions on the magnitude of the longitudinal electric field. Such a situation can occur in systems with sec-
tioned electrodes [2].¥ However, if the electrodes restrict in some manner the possible values of the lon-

*The first indication of such a difficulty is found in [12].

1If the exchange parameter [3] is small, as is seen from the diagram of the accelerator [1], a regular pat-
tern of the flow may be formed by going over to complete conductivity, i.e., with the aid of mass transport
across the anode and the partial settling of ions on the cathode, forcing the ions to carry across the elec-
tric current,
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gitudinal electric field E¢ (the simplest example is that of ideally conducting solid metal electrodes,on
which E¢= 0), then there at once arises the problem of reconciling the fields. For this it is necessary to
consider the differential equations of a higher order than the equations of motion of an ideally conducting
plasma in which the inertia of the electrons is neglected, i.e., to take into account either the finite con-
ductivity of the plasma or the inertia of the electrons or both together.

A qualitative analysis of the processes in coaxial accelerators was given in [1, 4, 5] within the frame-
work of a two-fluid model of a plasma. The general properties of two-dimensional flows of a plasma were
analyzed in [1] under the assumption that it was ideally conducting (o==)and that the electrons were in-
ertialess (m=90). It was shown that the flows have completely different properties for small exchange
parameters (< 1) and for £> 1.* The effect of the exchange parameter on the flow pattern is clarified
by the fact that for cold electrodes (T, =0) such quantities as the electrical potential ¢ and the freezing-in
characteristic B/n are preserved not along the ion trajectories but along the electron trajectories. For
¢ <« 1, when the ion and electron trajectories almost coincide, we can speak of the freezing in of the field
"in the plasma,” i.e., in both its components. But if £ 1, the values of B/n and ¢ in the volume are deter-
mined basically by their values near the cathode. Therefore, even when the conductivity is very good, but
£ ~1, a perturbation of the longitudinal electric field from the solid metal cathode is propagated throughout
the whole flow. These considerations were confirmed in [4, 5], where the nature of the perturbations in-
troduced by a weak nonideal splitting of the electrodes was analyzed (by ideally split electrodes we mean
electrodes which do not impose any restrictions on Eg); these perturbations were small because of the fact
that the splitting was weakly nonideal. Let us consider [4] in more detail; it was assumed in that paper
that the plasma quasineutral was (n; ¥ng), the inertia of the electrons was negligibly small (m=0), but that
the conductivity of the plasma o was finite, but large. The fundamental results of [4] can be formulated as
follows:

1) if £ < 1, the perturbations can be localized in symmetric skin layers near the electrodes; however,
the skin thicknesses correspond to the diffusion of the plasma in the magnetic field and not to the diffusion
of the field in the plasma [6]. In this case calculations using the boundary-layer method can be used;

2) but if £ 1, the perturbations introduced by the nonideal nature of the cathode embrace the whole
volume of the pipe;this leads to the formation of a pre-anode layer. The flow can now no longer be de-
veloped from the "basic® flow and pre~electrode layers,and we must seek the solution for the whole vol~
ume of the pipe at one stroke. The strict solution of the nonlinear two-dimensional problem is extremely
difficult; at the same time, the approximation of a narrow pipe clearly will not be suitable. An acceptable
approach is the approximation by a pipe of slowly changing cross section developed in [1, 7] for the case
of an ideally conducting plasma. This approximation is generalized here to the case of finite conductivity.
In addition, we only analyze plane flows, which are the simplest, since to take account of axial symmetry
is nontrivial both physically and mathematically.

It should be noted that the experimental study of flows in pipes [8, 9] completely confirms the con-
clugsions of theory [1, 4, 5]. However, the pattern of the flows turns out to be much more complex, We are
concerned with the stability of flows in coaxial accelerators. Experiments and computations on a digital
computer have shown that for sufficiently large &, plasma flows in pipes with solid metal electrodes are un~
stable, resulting in the formation of pre-anode "explosions" {10, 11]. Brushlinskii, Gerlakh, and Morozov,
having checked through a large number of variants, have established that there is a eritical value E* for
given values of the magnetic Reynolds number Ry, and the parameter 8 such that for £ > £* the flow loses

stability., The relation between £ * and the parameters Ry and 8 for 8> 0.1 and given electrode geometry
can be approximated by the equation [10]

E*~@/Rp)", B =38np/B (0.1

From this, in particular, it follows that the velocity v is restricted when there is regular outflow of
the plasma. Indeed, v ~£I<€£*1, and since Ry/B ~B%v, I ~B, v has an upper bound. Brushlingkii and Morozov
investigated the stability of flows which can be described by a set of equations for two-fluid magnetic hydro-
dynamics, assuming ideal conductivity [12]. It appears that the flow is always unstable if there are points
at which the vectors Vp and V(p+ BY8xn) are not parallel. It will be shown below that the analysis of a two-
fluid system of equations using the approximation of a pipe of slowly varying cross section leads to a rela-
tion similar to (0.1), but there is no comprehensive theory of pre-anode explosions at this time,

*We recall that the exchange parameter ¢ (cf. [3]) is the ratio of the charge current I to the mass transport
m in current units.



1. We consider the stationary plane flow of a plasma in a transverse
y magnetic field, i.e., a flow for which the velocity vector v of the plasma,
the current vector j, and the electric field E lie in the xy plane, the mag-
"y netic field B is perpendicular to the xy plane, and all the variables depend
|£ Z only on the coordinates x and y. The x axis is directed along the axis of
. the pipe (Fig. 1). The walls of the pipe are the electrode; they may be
either solid metal or split. We shall assume that the plasma is quasi-
neutral, completely ionized, readily conducting, inviscid, and that it does
Fig. 1 not conduct heat; we shall also assume that the ions have single charges
and that the inertia of the electrons is negligibly small. We assume also
that the state of the components of the plasma is described by the poly-
tropic law. The definition of what we mean by the term "readily conducting™ will be given below. The mass
of an ion is denoted by M, the conductivity by o, the density by p, and the gas kinetic pressures of the ionic
and electronic components by p; and pg, respectively. Under these assumptions the equations of two-fluid
magnetic hydrodynamies have the form

®F

<
-«

; e v ej
(WWV=—Y§ ﬁ@LF7xB)—7E a-n
j - M M .
—§—=E+—1;—XB+;VP1;~;§JXB 1.2)

divpy=0, rotE=0, rotB= —{ilj (1.3)

P; = D (P)y Pe= P.(p) (1.4)

The first two equations of (1.3) are satisfied by the introduction of the stream function ¥ (x, y) and
‘the electric potential ¢ (x, y):

ov
pvx':%v pvy=—m-,E=—ch (1-5)
In addition,
1, _ B 1.6
_c'J X B=— V8n ( )

Substituting the value of j/o from (1.2) into (1.1) and noting (1.6), we obtain

(v v =——v(p+ P+ 5) (1.7

If we introduce the "total" plasma pressure P as the sum of the gas kinetic pressure p=pj +pe and
the magnetic pressure BY8, we can write

(vy)v=—T, P=p(p)Lt o (1.8)

We introduce the variable u, a typical ratio of the transverse (ionic) velocity component vy to the
longitudinal component vx.* We shall say that a flow is slowly varying if

p1, I(V'V)UVINHI(V‘V)”x, (1.9)

In what follows we consider this case. We shall assume that the conductivity of the plasma is solarge
that

m=ﬂgﬁ>1w=£) (1.10)

‘vm

Here v, is a typical velocity, L a typical longitudinal scale length, v, the magnetic viscosity of the
plasma.

Assuming that (1.9), (1.10) hold, we can significantly simplify the equations. It follows from (1.9) that
| 8P/8y|~ u| 8P/8x]s and so we can ignore the relation between P and y, assuming P to be a function only
of x,

*For regimes in which the plasma does not settle at the walls, u is a quantity of the order of the maximum
absolute value of the tangent of the angle between the walls of the pipe and the x axis.
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Then instead of (1.1} we can write

1 dp . B 1.11
(V)= ——T0, P@) =p(0) + 55 (L.11)

If (1.10) holds, we can ignore jy/ o, the y component of the left side of (1.2). Introducing the thermal-
ization potential ¢ by the equation ’

M (4P,
Pr=1 -i"TS““QL 1.12)

and noting (1.11), we can write (1.2) in its components as follows:

v., 98 _ ¢, v, N M dp 9, v, B {(1.13)

¢ Oy 9z ¢ ' Tep dz ! 279?/_ c

Transforming to the variables x, ¥, we obtain from (1.11)-(1.13) the following set of equations of
motion:

9o 1 dp B (
gy =y P@=pe)+ i 1.14)
B 9, v, 9B 9, M dP
T TN T T T T @

We take Egs. (1.14) as the starting point in the subsequent discussion,* We can simplify them fur-
ther if we specify the form of the function p(p). The simplest cases are: p~p® (an adiabatic system), p ~p
(an isothermal system); if 8 <« 1, 8> 1, the more general polytropic relation is p ~p¥. In principle, Egs.
(1.14) do not impose any restrictions on the design of the electrodes or onthe conductivity as a function
of the coordinates. In this paper, we consider only flows in a pipe with solid electrodes and we shall as-
sume that the process is organized in such a way that ions are not emitted by the anode and do not settle
at the cathode, i.e., the mass of the plasma passing across any transverse cross section of the pipe is con-
stant and the electric current between the electrodes is purely electronic.

We now define the potential difference U between the anode and the cathode and the mass transportm’,
Instead of the variable ¥ it is convenient to introduce the normalized coordinate »=¥/m’, Under these as-
sumptions ¢ is constant along the electrodes; we take ¥ =0 at the cathode and =1 at the anode. We fur-
ther simplify equations (1.14) for the three cases.

FirstCase. Let p=py(o/pg)?Y, 8> 1. Acceleration is gas-dynamical in nature. In the zero-order ap-
proximation in 8 “!we can assume that p=p(x). The remaining equations can be written as

v 2 pet 0D,
%=+ w(e) = F(¥), B""“""‘”’,ﬁ’“"@T;’ (1.15)
v 20 b0, M duw(g)
T = Ut

/¢ op P
(o=, ®=7)
Here &y is the dimensionless thermalization potential. If F( $)=TFy=const and vy =vy(p), then
vx=Vx(x}. We can write the third equation of (1.15) in dimensionless form as
L R M dw dy v, PP
T e T dn (z;*";r‘*) (1.16)

Differentiating (1.16) again with respect to % and noting the second equation of (1.15), we obtain the
following equation for the freezing~in characteristic:

*k k4, B)

T T e

(1.17)
P

*The equations investigated in [4] are obtained by linearizing equations (1.14) if as the unperturbed flow we
take the flow in a pipe with ideally split electrodes:

vy = vx (%}, p = p (2), B/ p = const

531



Equation (1.17) does not contain a Hall term. The Hall effect enters, however, through the boundary
conditions for (1.17).

SecondCase. Let p=p0(p/p0)7, B<< 1. Acceleration is electromagnetic in nature. From (1.14) in the
zero-order approximation in 8

_ _om V 8aP (z)
B=B(z), p= —TTD, 5% (1.18)

The exchange parameter £ can be written as

g= 2 (ﬂ>"’ (1.19)

em’ \ 27

Here P; is the maximum value of P corresponding to the entrance to the pipe. The first equation of
(1.14) can be written in a dimensionless form as

our __ 0@, M\ [P\ 1
T =T = L =1 [ .20
= (»=v(zmg)" 0@ =1- (7)) (1.20)
We transform the left side of the last equation of (1.14):
v, pv, OB _ 4nvmu 2eUE \Y2 9p
T = mo ) o (21
4 _p %p _ _ TpwTPO, /oy
% p o po¥ O, /o

If we take as the characteristic density p, the quantity

_ 4ne£ﬁ'2
Po = e

the fourth equation of (1.14) takes the form
30, _ ctU? M \Ys 1 dq (99, )'r+2 (M)T o, ) 1.22
W = T () g i (o) (o (1.22)

The second term on the right side of (1.22) takes account of the Hall effect. As vy, —0, we have a
regular solution for (1.22):

r=f0— &) (1.23)

This implies that &p and with it B/p are preserved along the electron trajectories yo= y—£q+ const.
For systems withsolid metal electrodes, the solution has a different structure from (1.23) because of the
effect of the boundary conditions. This question is considered in detail in §3 below.

Third Case, Lety= 2 (an adiabatic system). In this case 8 may be arbitrary. Equations (1.14) can
be transformed to the form

0 =25 [T |+ = (B =%

>0 U A M Ve e N\, oD, [aoT)z ]'/f 1.94
”Tﬁp_zr:vmu—q)*W(zf:UE) (W) [(aw) 'Jf“z] {Taq_‘Lg (”&p_ |} (1.24)

We consider the first and second cases in more detail.

2. Consider the thermal regime of accelerating the plasma (8 —«). For this regime, with F{)=
F, = const, the equations of motion and the field equations have the following forms:
a) the zero-order approximation in gl

v 2 (/)
S+ w(e)=Fo, B=—0oM 75 @1

&£
2@ oD M dw dp ' ply,
(W—ST, T|=S’Vm s d.’l))

0
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¢ We see that the dynamical and electrical problems are inde-

! pendent here: if we specify p, vk, w, we can then find &y and B. This
p is reasonable since in this regime the field is completely defined by
the gas-dynamic nature of the flow;

I
i b) first approximation, We denote the unperturbed values by the
0 A U subscript 0 and the perturbed values by the suscript 1. Then we obtain
: B,,? P d

Fig. 2 P =— 872)3(0) » Voo = — S—p((—:’;— dw) ("27(0) = E;i(%:)

2By _0Bwn O rcegy  Yw) ? Pe

0 coy  OM by O [( Po) ”(o)> * cP(o)]

_ 2 (B Pwy M g O Py (2.2)
on ("P(o) Py / em’ dn 0P Proy

The last equation of (2.2) is mathematically equivalent to the equation of heat conduction in which the
right side is a function of n and . When F=F() the equation is more complicated, but its structure re-
mains as before. Returning to the original set of equations (1.1)-(1.4), it is easy to see that as 8 — =, we
can ignore the term j x B/enc in equation (1.2). Indeed, the order of the term j ~cB/47L and the ratio of
j x'B/enc to the Lorentz term v x B/c are each (v ~cT):

cB Ca 4ne’n B 2.3
4nlenc, = ¢, L (Hi ="WE A= 4:rtp) @.3)
1

Keeping IIj constant and increasing g ~c’1/c?as, we see that the Hall current is indeed negligible.
Hence, on the right side of the equation for &y in (2.1) the Hall term depends only on the longitudinal co-
ordinate n, and the Hall term is absent from the equation for B/p in (1.17).

The simplest form of the system (2.1) can be analyzed for the case of cold ions (p; —0). Here dp=4&,
and from (2.1) we obtain

2D oD M dw
W:%ﬂ—mﬁ’—ﬂ]"ogwg'l’ I<in<in, (2.4)

The boundary conditions for (2.4) have the form
® M, 0)=0, @, 1)=1, DO, p)=De(x) (2.5)
Consider in more detail the case when
W =wo +nMw; (wy; = const, w, = const)
Then the solution of (2.5), while preserving its general intrinsic structure,becomes somewhat sim-
pler.* If we introduce the function I' through the equation

U= — 4 o w0y (4 — ) (2.6)

we reduce the problem (2.4), (2.5) to the following:

[N ar
The solution of Eq. (2.7) has the form
] 1
T (n,9) = 2D} exp[— n?nn] sin nmpSI‘o(C)sin antdg (2.8)
=] [

It follows from (2.8) that T' —0 for n > 7~2 and so
— M —
D= — o Wy (P — ) = D () (> =ny) (2.9)

*Equation (2.4) with the boundary conditions (2.5) replaced by &= y +3+M[w(n)~w(0)}/eU leads to a prob-
Iem which is easily solved by Laplace's method.



Thus, the effect of the conditions at the entry side are significant for 0 <75 £1,, and it is just in this
interval that there is a longitudinal eleetric field; for 5 > 1, the longitudinal electric field is exponentially
small. We can say that the perturbation of the initial longitudinal electric field by the boundary conditions (in
this case, at the solid electrodes) penetrates the skin into the depth of the plasma flow. In this case the
pre~electrode skin layer is symmetric. The situation here is the same as when a boundary layer occurs
in ordinary gas-dynamics. For > 7, the skin layers overlap, which results in the longitudinal electric
field vanishing (the domain E in Fig, 2).*

In conclusion, we note two exactly solvable limiting cases. For this we need not assume that the flow
is slowly varying,and the restriction on the magnetic Reynolds number can be lifted,

First Case. Let o — «, Then the equation for the freezing in of the electron component is valid [1]¢

d €.
2 e B=E2 (g — ) (2.10)

Determining p and ¥ from the equations of gas-dynamics and noting that ¢ (@) is an a priori given
function, we obtain a single equation for B. Obviously, however, in this case we have to ignore boundary
effects.

Second Case. Let ¢ —0. Then Ohm's law (1.2) takes the form
i M -
—G——E+—gP—Vpe, E=-—Vg (2.11)

Assuming that p,=pg () and noting that div j =0, we find that

dive (% Vp.(p) — ch) =0 (2.12)

The density p is defined from the gas-dynamic problem,and so Eq. (2.12) completely defines ¢ when
the boundary conditions on ¢ are given; hence the distribution of the electric current is determined.

3. Consider the electrodynamic regime of accelerating the plasma (8 —0). For flows with g — =, it
was shown that when the conductivity is finite, ®—®(¢), and thus, along a given stream line = const the
potential is conserved. Obviously (cf. footnote on p. 534) if the pipe is sufficiently long and the conductivity
finite, a regime is always established which is close to that of a flow with $=&(@) (we call the latter a quasi-
isomagnetic flow), For a quasi-isomagnetic flow the electric field is perpendicular to the ionic trajectory
(E-v =0), and so, as we see from (1.1}, the acceleration of ions in regimes with 3« 1 is determined by the
term jx/o, i.e., the "electron wind" [8, 13]. This regime is impactive (faster electrons, striking the ions,
accelerate them) and it is naturally called ohmic. The qualitative features of a quasi~isomagnetic ohmic
regime are most simply analyzed by means of the example of a flow in a narrow pipe with solid walls (the
electrodes). Suppose the ions are cold, i.e., p(p)=pe(p). It follows from (1.2) that E=vB/c; since U= _
Ef =const (f is the width of the pipe), the back emf is constant, vBf/c=const. Since the mass flow m-=pvf
is also constant, it is thus obvious that the condition for an isomagnetic regime B/p =const holds for the
narrow pipe. As a result, we obtain from (1.14)

i Md( B’) (3.1)

B v¥ B2
= const, pof == const, -5~ -+ w(p) 4+ prra const S = @ \P +a

The first three equations of (3.1) are analogous to the equations for the flow of an ideal plasma in a
narrow pipe. In particular, it follows from this that the pipe must have a throat. The fourth equation is in-
dependent; it determines the longitudinal current in the pipe. For S 1, j =—wT]Jy, where wr =MoB/epc
is the Hall parameter.

The system (3.1), strictly speaking, can only be applied to a narrow "tubular current.” In a pipe of
finite width we have to take into account two-dimensional effects due to the presence of a longitudinal cur-
rent. The quasi-isomagnetic flow

*For cold ions and small B the situation is analogous: the longitudinal electric field dies out with distance
from the entry to the pipe since the equation for & is of quasiparabolic type:
D am\ oD )
- Fare o §)e>o
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m dy

is a direct generalization of (3.1) to the case of a pipe of finite width,

Consider the quasi~-isomagnetic regime under the assumption, for simplicity, that the conductivity
of the plasma is constant.* For g« 1 we can assume that ®p=%&in (1.22). Taking note of (1.20}, for a
quasi-isomagnetic regime we have
dd Tt
u={(g+a) G| " (g=oconst>0)
i Ik M Ye 13 g ( dD \v+¥h 3.9
P [ZeUi (q+qo)] et —q)Y 4z | 49 ) (8-2)
The function g(x) is determined from the condition that the factor in front of the term 8%/8% on the
right side of the second equation of (3.2) is a constant. Introducing a characteristic longitudinal scale length
L for the decrease in the magnetic field (in an accelerating regime dg/dx > 0), we obtain an equation for q(x):

L dg
L 4y (3.9)
g+ g0 2 (l—g)¥ 0%

If we take for the typical velocity v, the quantity (2eU%/ M)i/ ? and for the typical magnetic field B, the
quantity ¢Upy/m°, we can transform the factor on the right side of the second equation of (3.2) to the form

AU M ‘/z___ T m .
&y, Ypol ('23U5> T e ( pnm)(mr)o =a 6.4)

Here cTzzypa/ Py (T )y is the typical Hall parameter. Let £ denote the value of 8%/9¢ at the anode
(¥=1). Integrating (3.2) and noting that $(0)= 0, we obtain

4 e
4% T [4sae® (1))

D= 2 (s — (1 sae’(L — )=} e

sag

Here s=vy + 5}’2 so that in fact s > 1. The condition (1) =1 yields a relation between a and &1

L= i S (01 sae e — 1) (3.6)

It follows from (3.6) that e—~1as a~-0,for a> 0, £ > 1, It is easy to see that the case &£ —= ig pos~
sible; this is called the limiting regime, It happens when

_ ."__‘l__ L 2 342y \v+ 3.7

e=a = s(s—i) “3+27(1+27) 3.7
¥ ;
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Fig. 3 Fig. 4

*If o depends on the temperature T, for example, o= JO(T/T0)3/Z, this case can also easily be considered,
assuming a polytropic law for p(p).
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For y =5/3, a*=1.05. A qualitative representation of the function ¢ (a) is shown in Fig. 3. The singu~
larity of the solution (3.5) is a branch point. It limits the maximum possible value of . Indeed, it follows
formally from (3.5) that

YA = ¢ (3.8)

As & —« we have a —a* and P *~1, i.e., the singularity of the solution occurs at the anode of the
accelerator. The solution is regular for 0=a<a*, Using (3.4), we can write the condition that the solution
be regular as

GT?_ i i L
L5 oo > o (m ) (3.9)

It follows from (1.8) and (3.2) that

b V-1 a0 s
o~ (m) v~ ()
A qualitative profile of p and vy is shown in Fig. 4. We have p —0 at the anode as d&/d¥ — w0,

The longitudinal electric current presses the plasma against the anode; since the electrons move in
the transverse direction due to collisions with ions, the motion is similar to that of diffusion. At the cathode
the density is higher,and so it is easier for the electrons to leave the cathode than for them to reach the
anode,

We see [ef. (3.5)] that d®/d¥ increases as P increases, i.e., in the direction of the anode, so that it is
only near the anode that a zone of the electric field of high intensity is formed, i.e., the pre-anode layer.

Indeed, the formation of the "pre-anode layer" is connected simply with the increase in resistance as
p—0 and not with the transfer of potential as in [4].

Formally, as the limiting regime is attained there should be a breakaway of the plasma from the anode,
which would lead to a rapid redistribution of the current density in the pipe and to a collapse of the station~
ary regime, In fact, however, stability must be lost somewhat earlier because of the large divergence be-
tween the electron velocity and the ion velocity (it is easy to see that vgg > vy =~ as d®/dp — «); in addi-
tion, the effect of the gas kinetic viscosity of the plasma must also affect the stability of the flow. Plasma
flows in which breakaway occurs were studied in [14]. Attention is directed to the fact that the criterion
(3.9) is closely similar to the condition (0.1) for the occurrence of pre~anode explosions. Indeed, if we in-
troduce the "local" exchange parameter £, as the typical ratic of the transverse electron velocity to the lon-
gitudinal plasma velocity, we find from (3.9) that

m ) g _B.e,,y" (3.10)

McBy 4
b= drelpovy _I:(po?/’a ! i!<( 2 Ry

vol Po
(Rm=———‘, ‘30:8“ 302)

vm
In conclusion, we estimate the energy dissipation due to Joule losses. In regimes close to the limit-
ing regime [jx|> | jyl , so that the volume is equaltoj% /c. The totalliberationof Joule beatin unittime is

1
Tl d® \oh m dg (3.11)
= drdy = \o(UEP| =+ ) —————— —-dyd
¢ Sf R §G( ¥ (d"’) et (g 05 1V
Integrating, we obtain the ratio of the Joule losses to the applied power N:
Q BB /342y Y2 — JIT = _mEU
F = ()T >t (Vv — 2 ) (3.12)

5
2~ 0288, In [4 + 0.4ae”] ~ 2o In e, v =1

It follows from this that the Joule losses are small for £¢£€1, 8« 1, In addition, the size of the Joule
losses is independent of the conductivity of the plasma.
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