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C O N D U C T I N G  

Simplified equations are  obtained describing slowly changing plane flows of a readily con- 
ducting quasineutral  inviscid p lasma in a pipe. The pract ical ly  interest ing case of flow 
in a channel with solid metal ideally conducting walls (electrodes) is analyzed. When the 
gas p r e s s u r e  is la rge  by compar ison with the magnetic  p re s su re  (fl >> 1), the field and 
current  distr ibution is determined by gas dynamic fac tors ,  and the solid e lectrodes  per turb 
the longitudinal e lec t r ic  field in a "skin" of the flow, symmet r ica l ly  on the two sides of the 
flow, leading to attenuation of the longitudinal e lect r ic  field near  the input to the pipe; we 
also consider  problems in the motion of the p lasma under ideal and under poor conductivity. 
In the converse  limiting case (fi<< 1), it is shown that as the motion of the p lasma in the pipe 
acce le ra tes  near  the anode, there is observed an increase  in the intensity of the e lectr ic  
field which is sharply inhomogeneous in the t r ansve r se  direction. The possibi l i ty of the 
p lasma breaking away f rom the anode (the limiting regime) is indicated, this being accom-  
panied by a divergence between the e lectron velocity and the velocity of the ions. A c r i t e -  
r ion is obtained for  the breakaway of the plasma,  and its possible connection with the oc-  
cur rence  of pre-anode  "explosions" is noted. It is shown that for/3<< 1, Joule losses  are  
small  by compar i son  with the power in the charge and the magnitude of the losses  is in-  
dependent of the conductivity of the p lasma.  

Many theoret ical  and experimental  papers  have been devoted to the s tandard coaxial plasma acce le r -  
ator  with a special magnetic field (i.e., a field c rea ted  exclusively by the e lectr ic  cur rent  flowing through 
the accelera tor) ;  never the less  up to this t ime there is no proper  understanding of the p rocesses  in sys -  
t ems  of such a kind. This can be explained both by the var ie ty  of the p rocesses  and by their  complexity 
and their  interdependence. Even if we leave on one side questions connected with the ionization of the 
p lasma and its fr ict ion at the e lectrodes  -- the walls of the accelerat ing pipe - and consider  the plasma to 
be fully ionized and inviscid, there remains  the very  complex problem of the construct ion of the pat tern of 
the p lasma flow subject to var ious  boundary conditions at the electrodes.  The essence of this problem 
(which occurs  for the most  var ied flows of a p lasma near  the walls) lies in the difficulty of reconcil ing the 
e lect romagnet ic  fields in the p lasma flow with the fields at the e lect rodes* since a longitudinal e lectr ic  
field (cf. [1]) is neces sa ry  for  the e lectromagnet ic  accelerat ion of a readily conducting p lasma (i.e., to ac -  
ce lera te  the ions while p rese rv ing  quasineutrali ty).  Obviously, the problem of reconcil ing the fields in the 
flow and at the e lect rodes  does not a r i se  if the construction of the e lectrodes  does not impose any r e s t r i c -  
tions on the magnitude of the longitudinal e lec t r ic  field. Such a situation can occur  in sys tems with sec-  
tioned electrodes  [2].r However, if the e lect rodes  r e s t r i c t  in some manner  the possible values of the lon- 

*The f i rs t  indication of such a difficulty is found in [12]. 
$If the exchange pa rame te r  [3] is small,  as is seen f rom the diagram of the acce le ra to r  [1], a regular  pat-  
tern of the flow may be formed by going over to complete conductivity, i.e., with the aid of mass  t ranspor t  
ac ross  the anode and the part ia l  settling of ions on the cathode, forcing the ions to c a r r y  ac ross  the e lec-  
t r ic  current .  
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gitudinal e lec t r ic  field E t (the s implest  example is that of ideally conducting solid metal  electrodes,  on 
which Et= 0), then there at once a r i ses  the problem of reconcil ing the fields. For  this it is neces sa ry  to 
consider  the differential equations of a higher o rder  than the equations of motion of an ideally conducting 
plasma in which the inert ia  of the e lec t rons  is neglected, i.e., to take into account ei ther  the finite con- 
ductivity of the p lasma or  the iner t ia  of the electrons or  both together.  

A qualitative analysis  of the p rocesses  in coaxial acce le ra to r s  was given in [1, 4, 5] within the f r a m e -  
work of a two-fluid model of a plasma.  The general  p roper t i es  of two-dimensional  flows of a p lasma were  
analyzed in [1] under the assumption that it was ideally conducting ((r=m~and that the e lec t rons  were  in- 
e r t ia less  (m = 0). It was shown that the flows have completely different proper t ies  for  small  exchange 
p a r a m e t e r s  (~ << 1) and for ~ > 1.* The effect of the exchange pa rame te r  on the flow pat tern  is c lar i f ied 
by the fact  that for  cold e lect rodes  (Te= 0) such quantities as the e lect r ical  potential ~o and the f reez ing- in  
charac te r i s t i c  B/n are  p re se rved  not along the ion t ra jec to r ies  but along the electron t ra jec tor ies .  For  

<< 1, when the ion and electron t ra jec to r ies  a lmost  coincide, we can speak of the f reezing in of the field 
"in the p lasma,"  i.e., in both its components.  But if ~ > 1, the values of B/n  and ~0 in the volume are de ter -  
mined basical ly by their  values near  the cathode. Therefore ,  even when the conductivity is ve ry  good, but 

~1, a per turbat ion of the longitudinal e lectr ic  field f rom the solid metal cathode is propagated throughout 
the whole flow. These considerat ions were confirmed in [4, 5], where the nature of the per turbat ions in- 
t roduced by a weak nonideal splitting of the e lect rodes  was analyzed {by ideally split e lect rodes  we mean 
e lec t rodes  which do not impose any res t r i c t ions  on Et); these per turbat ions were  small  because of the fact 
that the splitting was weakly nonideal. Let us consider  [4] in more  detail; it was assumed  in that paper  
that the p lasma  quasineutral  was (n i ~ne) , the inert ia  of the electrons was negligibly small  (m = 0}, but that 
the conductivity of the p lasma c, was finite, but large.  The fundamental resu l t s  of [4] can be formulated as 
follows: 

1) if ~ << 1, the per turbat ions  can be localized in symmet r i c  skin layers  near  the e lectrodes;  however,  
the skin thicknesses  cor respond to the diffusion of the p lasma in the magnetic field and not to the diffusion 
of the field in the p lasma [6]. In this case calculations using the boundary- layer  method can be used; 

2) but if ~ > 1, the per turbat ions introduced by the nonideal nature of the cathode embrace  the whole 
volume of the pipe; this leads to the formation of a pre-anode  layer .  The flow can now no longer be de- 
veloped f rom the "basic" flow and p re -e l ec t rode  layers ,and  we must  seek the solution for the whole vol-  
ume of the pipe at one stroke.  The s t r ic t  solution of the nonlinear two-dimensional  problem is ext remely  
difficult; at the same time, the approximation of a nar row pipe c lear ly  wilt not be suitable. An acceptable 
approach is the approximation by a pipe of slowly changing c ros s  section developed in [1, 7] for the case 
of an ideally conducting plasma.  This approximation is general ized here to the case of finite conductivity. 
In addition, we only analyze plane flows, which are  the simplest ,  since to take account of axial symmet ry  
is nontrivial  both physical ly and mathematical ly .  

It should be noted that the experimental  study of flows in pipes [8, 9] completely confi rms the con- 
clusions of theory [1, 4, 5]. However, the pat tern of the flows turns out to be much more  complex. We are 
concerned with the stability of flows in coaxial acce le ra to r s .  Experiments and computations on a digital 
computer  have shown that for sufficiently large  ~, p lasma  flows in pipes with solid metal  e lec t rodes  are  un- 
stable, resul t ing in the formation of pre-anode  "explosions" [10, 11]. Brushlinskii,  Gerlakh, and Morozov, 
having checked through a large number of var iants ,  have established that there  is a cr i t ica l  value ~ * for 
given values of the magnetic  Reynolds number  R m and the pa rame te r  fi such that for ~ > ~ * the flow loses  
stability. The relat ion between ~ * and the p a r a m e t e r s  R m and fi for fl > 0.1 and given electrode geomet ry  
can be approximated by the equation [10] 

~* ~ (~3 / R,,,)'/,, ~ = 8~p / B~ (0 .  i )  

F r o m  this, in par t icular ,  it follows that the velocity v is r e s t r i c t ed  when there  is regula r  outflow of 
the plasma.  Indeed, v ~ I ~  ~*I, and since Rm/~  ~B2v, I ,~B, v has an upper bound. Brushlinskii  and Morozov 
investigated the stability of flows which can be descr ibed by a set of equations for two-fluid magnetic hydro-  
dynamics,  assuming ideal conductivity [12]. It appears  that the flow is always unstable if there are  points 
at which the vec to rs  Up and V(p + B2/8v) are  not paral lel .  It will be shown below that the analysis  of a two- 
fluid sys tem of equations using the approximation of a pipe of s lowly varying c r o s s  section leads to a re la -  
tion s imi la r  to (0.1), but there  is no comprehensive  theory of pre-anode  explosions at this t ime. 

�9 We recal l  that the exchange pa rame te r  ~ (cf. [3]) is the rat io of the charge cur ren t  I to the mass  t ranspor t  
m in cur ren t  units. 
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Fig. 1 

1. We consider  the stat ionary plane flow of a p lasma in a t r ansver se  
magnetic field, i.e., a flow for which the velocity vec tor  v of the plasma,  
the cur rent  vector  j, and the electr ic  field E lie in the xy plane, the mag-  
netic field B is perpendicular  to the xy plane, and all the var iables  depend 
only on the coordinates x and y. The x axis is directed along the axis of 
the pipe (Fig. 1). The walls of the pipe a re  the electrode;  they may be 
either solid metal or  split. We shall assume that the p lasma is quasi-  
neutral ,  completely ionized, readily conducting, inviscid, and that it does 
not conduct heat; we shall also assume that the ions have single cha rges  
and that the iner t ia  of the electrons is negligibly small.  We assume also 
that the state of the components of the p lasma is descr ibed by the 'poly-  

tropic law. The definition of what we mean by the t e rm "readily conducting" will be given below. The mass  
of an ion is denoted by M, the conductivity by (r, the density by p, and the gas kinetic p r e s su re s  of the ionic 
and electronic components by Pi and Pe, respect ively.  Under these assumptions the equations of two-fluid 
magnetic hydrodynamics  have the form 

e (  v ) ej (1.1) 
( V - V ) V  : - -  v p i  ~--~- E + -7- • B - p Ma 

M M ~. ~ = E -~ V_c X B ~- "-~-pVPe--T~-## XB (1.2) 

4u (1.3) d i v p v = 0 ,  r o t E = 0 ,  r o t B = - / - j  

p~ = p~(p), p~ -- p~(p) (1.4) 

The f irs t  two equations of (1.3) a re  satisfied by the introduction of the s t r eam function ~' (x, y) and 
the  e lectr ic  potential go (x, y): 

a~t , 0~ 
pv~ = --~-y, p v ~  = - -  - - ~ ,  E = - -  vq) (1.5) 

In addition, 

i . B 2 ( 1 . 6 )  
-7- j x B ---- -- V~-h- 

Substituting the value of j / q  f rom (1.2) into (1.1) and noting (1.6), we obtain 

l 
(v .v )v  = __~_V(p~ ~_ pe_}_8~ ) (1.7) 

If  we introduce the "total" p lasma p r e s s u r e  P as the sum of the gas kinetic p r e s su re  p=Pi  +Pe and 
the magnetic p r e s s u r e  B~/8 ~r, we can write 

B~ (1.8) (v.  V)v  = v~ p = p ( ~ ) ~  - ~ -  
9 ' 

We introduce the var iable  ~, a typical ratio of the t r ansve r se  (ionic) velocity component Vy to the 
longitudinal component Vx. * We shall say that a flow is slowly varying if 

~ 1 ,  I(v.v)v~lN~l(v.v)v~l ( 1 . 9 )  

In what follows we consider  this case.  We shall assume that the conductivity of the p lasma is so l a rge  

that 

= ~ i  = ~ - ~ )  ( 1 . 1 0 )  

Here v 0 is a typical velocity, L a typical longitudinal scale Iength, u m the magnetic viscosi ty of the 

plasma.  

Assuming that (1.9), (1.10) hold, we can significantly simplify the equations. It follows f rom (1.9) that 
I 0 P / ~ y l  ~ ~ I 0 P / ~ x  ], and so we can ignore the relat ion between P and y, assuming P to be a function only 

of x, 

* For  reg imes  in which the p lasma does not settle at the walls, /~ is a quantity of the o rder  of the maximum 
absolute value of the tangent of the angle between the walls of the pipe and the x axis. 
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Then instead of (1.15 we can wri te  

i dP B ~ 
( v . v ) v ~ =  --T d-7' p(x) = p ( 9 )  + S---g 

If (1.10) holds, we can ignore jy/(r, the y component of the left side of (1.2). 
ization potential ~0 T by the equation 

(1.11) 

Introducing the t h e r m a l -  

M 
% = ~ p  ~ T f  dpi T 

and noting (1.11), we can wri te  (1.2) in its components as follows: 

(1.12) 

v~n OB 0%: vvB M dP Oq)~ vai  ! 
T a -7= - -  o' -7+T ~ - -  O= + - -  ' ep dx ' -~y c 

Transforming  to the var iables  x, q?, we obtain f rom (1.11)-(1.13) the following set of 
motion: 

ovx I dg p ( x ) = p ( 9 ) +  ~ 
Yx-O~x = p d x '  

B OqaT ~rn OB 0%: M dP 
o--fi-= a , v ,  7 Pv'~a-~ = ---b-~x + ~p 

We take Eqs. (1.14) as the s tar t ing point in the subsequent discussion.* 

(1.13) 

equations of 

(1.14) 

We can simplify them fur -  
ther  if we specify the form of the function p(p). The s implest  eases  are :  p ~p 2 (an adiabatic system),  p ~p 
(an isothermal  system);  if fl << 1, fl>>l, the more  general  polytropic relat ion is p ~ p T  In principle,  Eqs. 
(1.14) do not impose any res t r i c t ions  on the design of the e lectrodes  or on the  conductivity as a function 
of the coordinates .  In this paper,  we consider  only flows in a pipe with solid e lect rodes  and we shall as -  
sume that the p roces s  is organized in such a way that ions are  not emitted by the anode and do not settle 
at the cathode, i.e., the mass  of the p lasma passing ac ross  any t r ansve r se  c ross  section of the pipe is con- 
stant and the e lec t r ic  cur ren t  between the e lectrodes  is purely electronic.  

We now define the potential difference U between the anode and the cathode and the mass  t r anspor tm ' .  
Instead of the var iable  q~ it is  convenient to introduce the normal ized coordinate r = q ' / m ' .  Under these a s -  
sumptions ~b is constant along the e lectrodes;  we take r = 0 at the cathode and r = 1 at the anode. We fur -  
ther  simplify equations (1.14) for the three cases .  

F i r s tCase .  Let p=p0(p/p0)T, /3 >> 1. Accelera t ion is gas-dynamica l  in nature, tn the ze ro -o rde r  ap- 
proximation in fl-1 we can assume that p= p(x). The remaining equations can be wri t ten as 

%.2 pc u 009 T 
2 ~" W (p) = F (~p), B = (1.15) m" a~ 

2 u o~q) T ocb T M dw (9) 
- -  v , .  9 v:: "D-~-'--~ = - -  U ~ + - 7  d--'-~ 

i t )  ~W ~ Op - 7 '  oaT= 

Here ~T is the dimensionless  thermalizat ion potential. If F(r const and Vm = Vm(p) , then 
Vx=Vx(X). We can write the third  equation of (1.155 in dimensionless form as 

(1. 16) 

Differentiating (1.16) again with respec t  to r and noting the second equation of (1.15), we obtain the 
following equation for the freezing-in charac te r i s t i c :  

a,~ -- ~ k = (1.17) 

* The equations invest igated in [4] are obtained by ] inear iz ing  equations (1,145 i f  as the unperturbed f low we 
take the flow in a pipe with ideally split e lectrodes:  

Vx = ~ .  (x ) ,  p = V ( i h  B / p = r  
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Equation (1.17) does not contain a Hall term.  The Hall effect enters ,  however, through the boundary 
conditions for (1.17). 

SecondCase. Let p=po(p /po)  y ,  fl<< 1. Accelerat ion is e lectromagnet ic  in nature. F rom (1.14) in the 
z e r o - o r d e r  approximation in fl 

B. = B (x), ~ = 

The  e x c h a n g e  p a r a m e t e r  ~ c a n  be  w r i t t e n  a s  

,~" V~- f i  (~) 
cffcOr162 

(1.18) 

= Me [Pol ' / ,  (1.19) 

Here P0 is the maximum value of P corresponding to the entrance to the pipe. The f i rs t  equation of 
(1.14) can be written in a dimensionless  fo rm as 

ou, or ( f._M_~ 1,/, f ~ y/q 
O q -  O~ u = v x i 2 e U ~ ]  ' q ( x ) = t - - k - P ' [ o  / / 

We t rans fo rm the left side of the last  equation of (1.14): 

v. m pv x OB 4~v.mtt ( 2eU~ IlI, Op 

cOp TP 0p ?P0P'c0~(I)r I cO~ 

(1.20) 

(1.21) 

If we take as the charac te r i s t i c  density P0 the quantity 

Po = Mc~U 

the fourth equation of (1.14) takes the form 

020 r c~U2 f .M l'], i dq fOOt \~+a/O(Dr 0Or \ 
U - ~ - - - - 4 ~ p 0  ~2e~U (~__q)~ d~[-~--) [ - ~ - + ~ - - ~ - )  (1.22) 

The second t e r m  on the right side of (1.22) takes account of the Hall effect. As v m ~ 0 ,  we have a 
regular  solution for (1.22): 

(Iar = ] 0P -- ~q) (1.23) 

This implies that CT and with it B/p a re  p rese rved  along the electron t ra jec tor ies  Ce = r  const. 
For  sys tems  withsolid metal e lectrodes ,  the solution has a different s t ruc ture  f rom (1.23) because of the 
effect of the boundary conditions. This question is considered in detail in w below. 

Third Case. Let Y = 2 (an adiabatic system).  In this case  fl may be a rb i t ra ry .  Equations (1.14) can 
be t rans formed  to the form 

a--~- -- Lk-~-/ + ~ ] v , ,  B = ar L (~162 + x~'j 

l"I = 

P = 7Y L~O% / 0r z~ x \7;o / 

o,~),_. , ~q /M  1,~,/~" 1' ~ ,or  ,, ,~"1'~~162 +~[ (a r  l, +*~] ' l '  �9 , r~ ~, ~ } (1.24) 

We consider the first and second cases in more detail. 

2. Consider the thermal regime of accelerating the plasma (~--~o). For this regime, with F(r 
F 0 = const, the equations of motion and the field equations have the following forms: 

a) the zero-order approximation in fl-1: 

v ~  cU 0(1) r (2 .1 )  
- ~ + w ( p ) = F o ,  B = - - p 0 1 )  m" 0r 

, ) 
or = o n - ~ . - ~  w =  , ~ l =  ~ , ~ d x  

o 
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~ , ~  We see  that the dynamical  and e lec t r i ca l  p r o b l e m s  a re  inde- 
pendent here:  if we specify p, v x, w, we can then find ~T and B. This 
is r easonab le  since in this r eg ime  the field is comple te ly  defined by 
the g a s - d y n a m i c  nature  of the flow; 

b) f i r s t  approximat ion.  We denote the unper tu rbed  values  by the 
gV "~' -~ subsc r ip t  0 and the pe r tu rbed  values  by the susc r ip t  1. Then we obtain 

Fig. 2 9(1) B(~ 2 , V ( o ) V ( 1 ) = - - i P ( 1 ) d w ( o  ) (Cr(o)=dP(~ 

.( , ,  _ 0 , ( , ,  o r r " ( , )  § 0 
o,~ ~P(0--) -- an cp(o ) 0r L \ P(o) ~ ] - ~  C~(o-~J 

0~1 ~CP(o) P(o)/ em" d~ 1 c3~p P(o) 

The las t  equation of (2.2) is ma themat ica l ly  equivalent to the equation of heat  conduction in which the 
r ight  side is a function of ~? and $. When F= F(r the equation is m o r e  complicated,  but i ts  s t ruc tu re  r e -  
mains  as before .  Returning to the or iginal  set  of equations (1.1)-(1.4), i t  is easy  to see that as f i ~  ~,  we 
can ignore the t e r m  j • B / e n c  in equation (1.2). Indeed, the o rde r  of the t e r m  j -~cB/4~rL and the ra t io  of 
j • B / e n c  to the Lorentz  t e r m  v • B / c  a re  each (v ~CT): 

cB CA ( 4:~e~n B'~} (2.3) 
-- IIi Mc s c A ~  4rcLencz c rLHi V2 -- ' 

Keeping II i constant  and inc reas ing  fl ~C2T/C2A, we see  that the Hall cu r ren t  is indeed negligible.  
Hence, on the r ight  side of the equation for  r in (2.1) the Hall t e r m  depends only on the longitudinal co- 
ordinate  v , and  the Hall t e r m  is absent  f r o m  the equation for  B/p in (1.17). 

The s imp le s t  f o r m  of the s y s t e m  (2.1) can be analyzed for  the case  of cold ions (Pi ~ 0 ) .  Here  ~T=~ ,  
and f rom (2.1) we obtain 

0~q) 0qa M dw 0 ~ l ,  0 ~  0 
0,~ = D ~ - -  T ~  dn ' 

The boundary conditions for  (2.4) have the fo rm 

r (~, 0) ----- 0, r (q, 1) = l ,  �9 (0, , )  = q)0(~') 

Consider  in m o r e  detail  the case  when 

w ~Wo +~lwl(wl =cons t ,  Wo =coast)  

Then the solution of (2.5), while p r e s e r v i n g  
p l e r . *  I f  we introduce the function F through the 

(2.4) 

(2.5) 

i ts  genera l  in t r ins ic  s t ruc ture ,  becomes  somewhat  s i re-  
equation 

we reduce  the p rob lem (2.4), (2.5) to the following: 

(2.6) 

0~r 0 r  
3., - -5~- ,  r ( n , 0 ) =  r ( n , l ) = 0 ,  r (0 ,~; )=  P0(~) 

The solution of Eq. (2.7) has the f o r m  

ca 1 

F (q, ~) = 2 ~, exp [-- z~n2~l] sin ~n41 F0 (~) sin ~n~d~ 

(2.7) 

(2.8) 

It follows f r o m  (2.8) that F 4 0  for ~ > 7r-2,and so 

q) -~4- -  2-~-~ w1(4 ~ -  4) = q)(4) ( n ~ a  -~ = nl) (2.9) 

* Equation (2.4) with the boundary conditions (2.5) rep laced  by ~= X + r + M[w(~?)-w(0)]/eU leads to a p rob-  
lem which is  eas i ly  solved by L a p l a c e ' s  method.  
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Thus, the effect of the conditions at the entry side are  significant for 0-<~ ~71, and it is just in this 
interval that there  is a longitudinal e lec t r ic  field; for V > ~? ~ the longitudinal e lec t r ic  field is exponentially 
small .  We can say that the per turbat ion of the initial longitudinal e lect r ic  f ieldby the boundary conditions (in 
this case, at the solid electrodes)  penetrates  the skin into the depth of the p lasma flow. In this case the 
p re -e l ec t rode  skin l ayer  is symmet r i c .  The situation here  is the same as when a boundary layer  occurs  
in ordinary  gas-dynamics .  For  ~? > ~? j the skin l ayers  overlap, which resul ts  in the longitudinal e lec t r ic  
field vanishing (the domain E in Fig. 2).* 

In conclusion, we note two exactly solvable limiting cases .  For  this we need not assume that the flow 
is slowly varying,and the res t r ic t ion  on the magnetic Reynolds number can be lifted. 

F i rs t  Case. Let (r -~ co. Then the equation for the freezing in of the electron component is valid [1]: 

--_ ~ ( g - - c  ~Pe), B =  cm. (~P--~Pe)" " (2.10) 
4heM 

P 

Determining p and r f rom the equations of gas-dynamics and noting that g0T(r ) is an a pr ior i  given 
function, we obtain a single equation for  B. Obviously, however, in this ease we have to ignore boundary 
effects.  

Second Case. Let cr ~ 0 .  Then Ohm's  law (1.2) takes the form 

J : E  M -~- -[- T Vpe, E : --  V~0 (2.11) 

Assuming that pe=Pe(p) and noting that div j = 0, we find that 

M div  (Tv,e(p)-- v )=o (2.12) 

The density p is defined f rom the gas-dynamic problem, and so Eq. (2.12) completely defines @ when 
the boundary conditions on q~ are given; hence the distribution of the electr ic  cur ren t  is determined. 

3. Consider the e lec t rodynamic  regime of accelera t ing the p lasma (fi - -0) .  Fo r  flows with fl - -  co, it 
was shown that when the conductivity is finite, 5 - -~ ( r  and thus, along a given s t r eam line r const the 
potential is conserved.  Obviously (cf. footnote on p. 534) if the pipe is sufficiently long and the conductivity 
finite, a regime is always establ ished which is close to that of a flow with 5= ~(r (we call the la t te r  a quasi-  
isomagnetic  flow). For  a quas i - i somagnet ic  flow the electr ic  field is perpendicular  to the ionic t ra jec tory  
( E ' v  = 0), and so, as we see f rom (1.1), the acce lera t ion  of ions in reg imes  with fl<< 1 is determined by the 
t e rm ix/a, i.e., the "electron wind" [8, 13]. This regime is impactive (faster electrons,  str iking the ions, 
acce lera te  them) and it is natural ly called ohmic. The qualitative features  of a quas i - i somagnet ic  ohmic 
regime are  most  simply analyzed by means of the example of a flow in a narrow pipe with solid walls (the 
electrodes).  Suppose the ions are  cold, i.e., P(P)=Pe(P). It follows f rom (1.2) that E = v B / c ;  since U= 
E l=  const b r is the width of the pipe'), the back emf is constant, v B f / c  = const. Since the mass  flow m ' =  p v f  

is also constant, it is  thus obvious that the condition for  an isomagnetic regime B / p  =const holds for the 
nar row pipe. As a restflt, we obtain from (1.14) 

B v ~ B ~ ix M d (  B~) (3.1) 
-~ = const, pv/= const, T -~ w (9) "~ 4 ~  = const ~ --  ep dx _ p ~ 

The f i rs t  three equations of (3.1) are  analogous to the equations for  the flow of an ideal p lasma in a 
narrow pipe. In par t icular ,  it follows f rom this that the pipe must  have a throat.  The fourth equation is in- 
dependent; it determines  the longitudinal cur ren t  in the pipe. For  fl<< 1, jx=-W~ - jy, where WT = McrB/epc 
is the Hall pa ramete r .  

The sys tem (3.1), s t r ic t ly  speaking, can only be applied to a nar row "tubular cur ren t . "  In a pipe of 
finite width we have to take into account two-dimensional  effects due to the presence  of a longitudinal cur -  
rent.  The quas i - i somagnet ie  flow 

* F o r  cold ions and small  fl the situation is analogous: the longitudinal e lec t r ic  field dies out with distance 
f rom the entry to the pipe since the equation for  �9 is of quasiparabolic type: 

0~o 0~ ~ 0(I) 0o 
Ot~ l - -  a (q ,  " - ~ ) - ~ q - I " a ,  (q, '~)(a>O) 
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B cg de (~) 
p m" de 

i s  a d i r e c t  g e n e r a l i z a t i o n  of (3.1) to the  c a s e  of a p ipe  of  f in i te  width .  

C o n s i d e r  the  q u a s i - i s o m a g n e t i c  r e g i m e  u n d e r  the  a s s u m p t i o n ,  fo r  s i m p l i c i t y ,  tha t  the  conductivity" 
of the  p l a s m a  i s  c o n s t a n t . *  F o r  fi << 1 we can  a s s u m e  tha t  ~ = ~  in  (1.225. Tak ing  no te  of  {1.205, f o r  a 
q u a s i - i s o m a g n e t i c  r e g i m e  we  have  

F ,  , , d O  ]% 
u = Ltq + qo) -~- ]  (qo = consl~ > O) 

~ 0  c~U ~ [ M IV, ~ dq [ dO ]'t+'l, (3.2) 
dr = ~ L2~U~ (q + qo)J ~p0 (i - -  q)~ d~ \ - ~ ' /  

The func t ion  q(x) i s  d e t e r m i n e d  f r o m  the  cond i t i on  tha t  t he  f a c t o r  in  f r o n t  of  the  t e r m  a ~ / 3 r  on the  
r i g h t  s i de  of the  s e c o n d  equa t ion  of  {3.25 i s  a cons t an t .  I n t r o d u c i n g  a c h a r a c t e r i s t i c  l ong i tud ina l  s c a l e  l eng th  
L fo r  the  d e c r e a s e  in the  m a g n e t i c  f i e l d  (in an a c c e l e r a t i n g  r e g i m e  d q / d x  > 0), we ob ta in  an equa t ion  fo r  q(x): 

L dq = I (3.3) 
(q + qo) V, (l_q)~ J x  

If  we t a k e  f o r  the  ~ -p ica l  v e l o c i t y  v 0 the  quan t i t y  (2eU~/M) I/2 and f o r  the  t y p i c a l  m a g n e t i c  f i e l d  B 0 the  
quan t i t y  cUP0/m" , we can t r a n s f o r m  the  f a c t o r  on the  r i gh t  s i de  of the  s e c o n d  equa t ion  of (3.2) to the  f o r m  

4 ~  ~ 2w~ j = ~Y ~ ~ (~o~)o = a (3.4) 

H e r e  CT~= TPo/Po; (c~)0 i s  the  t y p i c a l  Ha i l  p a r a m e t e r .  Le t  e deno te  the  v a l u e  of O ~/O r a t  the  anode  
(r = 15. I n t e g r a t i n g  {3.2) and  no t ing  tha t  if(0)= 0, we  ob ta in  

dO e 
d~ [i~_sasS (t__~)]lls ' 

O =  ~ ~ s{  {[l + saeS]l-Vs_[i + sas~(i __,~)]1-Vs} (3.5) 

H e r e  s = 7 + 3/2 so  tha t  in  fac t  s > 1. The  cond i t ion  ~(1) = 1 y i e l d s  a r e l a t i o n  b e t w e e n  a and e :  

I ~ 8 S ~ .  ~ -  ~ {[ l  + saz~l~-'# - -  i} (3.6) 

I t  fo l lows  f r o m  (3.6) tha t  e ~ l  a s  a ~ 0 , f o r  a >  0, e > 1. I t  i s  e a s y  to s e e  that  the  c a s e  e ~  i s  p o s -  
s i b l e ;  t h i s  i s  c a l l e d  the  l i m i t i n g  r e g i m e .  I t  h a ppe ns  when 

= a ' =  l (  ~ 18 2 {3+2~1~+'7, (3.7) 

~E 

/ 
f 

F i g .  3 

f F  ....... 

 'jIV' J 
Fig .  4 

~I f  G d e p e n d s  on the  t e m p e r a t u r e  T, fo r  e x a m p l e ,  o~= cr0(T/T0)3/2, th i s  c a s e  can  a l so  e a s i l y  be  c o n s i d e r e d ,  
a s s u m i n g  a p o l y t r o p i c  l aw fo r  p (p) .  
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F o r  T =5/3 ,  a* = 1.05. A qual i ta t ive r ep resen ta t ion  of the function ~ (a) is  sho~a  in Fig. 3. The singu- 
la r i ty  of the solution (3.5) is  a b ranch  point. It  l imi t s  the m a x i m u m  poss ib le  value of r Indeed, it follows 
fo rma l ly  f r o m  (3.5) that 

i = ~b* (3 .8)  I ~ < 1  + ==== 

As e ~ o  we have a ~ a *  and r * ~ 1 ,  i ,e . ,  the s ingular i ty  of the solution occurs  at the anode of the 
acce l e ra to r .  The solution is  r egu la r  for  0-< a < a* .  Using (3.4), we can wri te  the condition that the solution 
be r egu la r  as  

I t  follows f r o m  (1.8) and (3.2) that  

L c,t �9 t . t [ rn" 

- ~  (-r~-u > 7 ( p-:c:) (3.9) 

(<~r 1-' .... ( de  1,t, 
v.---t-x~-r , v= t-d-r 

A quali tat ive prof i le  of p and Vx is  shown in Fig. 4. We have p ~ 0  at the anode as d~/d~I,-~ oo, 

The longitudinal e l ec t r i c  cu r ren t  p r e s s e s  the p l a sma  against  the anode; s ince the e lec t rons  move in 
the t r a n s v e r s e  direct ion due to col l is ions with ions, the motion is s i m i l a r  to that of diffusion. At the cathode 
the  density is  highel,  and so it i s  e a s i e r  for  the e lec t rons  to leave the cathode than for  them to reach the 
anode. 

We see  [ef. (3.5)] that  d@/dr i n c r e a s e s  as r i n c r e a s e s ,  i .e . ,  in the d i rec t ion of the anode, so that i t  is  
only nea r  the anode that a zone of the e l ec t r i c  field of high intensi ty  is  fo rmed ,  i .e. ,  the p r e - anode  layer .  

Indeed, the fo rmat ion  of the "p re -anode  l a y e r "  is  connected s imply  with the i n c r e a s e  in r e s i s t ance  as 
p - - 0  and not with the t r a n s f e r  of potent ial  as  in [4]. 

Formal ly ,  as  the l imi t ing  r eg ime  is at tained there  should be a b reakaway of the p l a s m a  f rom the anode, 
which would lead to a rapid  red is t r ibut ion  of the cu r r en t  density in the pipe and to a col lapse of the s ta t ion-  
a ry  r eg ime .  In fact ,  however ,  s tabi l i ty  mus t  be  lost  somewhat  e a r l i e r  because  of the l a rge  divergence be -  
tween the e lec t ron veloci ty  and the ion veloci ty  (it is easy  to see  that Vex>> v x --*~ as d ~ / d r  ~); in addi-  
tion, the effect  of the gas kinet ic  v i scos i ty  of the p l a s m a  mus t  a lso  affect  the s tabi l i ty  of the flow. P l a s m a  
flows in which b reakaway  occu r s  were  studied in [14]. Attention is d i rec ted  to the fact  that  the c r i te r ion  
(3.9) is  c losely  s i m i l a r  to the condition (0.1) for  the occu r r ence  of p r e - a n o d e  explosions.  Indeed, if we in-  
t roduce  the " local"  exchange p a r a m e t e r  } 1 as  the typical  ra t io  of the t r a n s v e r s e  e lec t ron  veloci ty  to the lon-  
gitudinal p l a s m a  veloci ty,  we find f r o m  (3.9) that 

vm , ~o = 8 ~  

In conclusion, we es t ima te  the energy  diss ipat ion due to Joule l o s se s .  In r e g i m e s  c lose  to the l imi t -  
ing r eg ime  [ Jx I >> I Jy [ , so that the volume is  equal to  j2 x /or .  The total  l ibera t ion  of Jou l e  hea t in  unit t ime is 

1 

i ~ e - .  ~ I d e  W ,  m" dq dqdap (3.11) 
Y" 0 

Integrat ing,  we obtain the ra t io  of the Joule l o s s e s  to the applied power  N: 

~___ ~f~ / ' 3 + 2 ,  ~-r-~ ( N = I U = - - - - g ~ )  (3.12) 

~Q 0.2~o In [1 q-0.4ae'l,l ~ - ~ - I n  ~ - s ,  y = t  N = 
I t  follows f rom this that  the Joule l o s s e s  a r e  smal l  for  ~ 1, /3<< 1. In addition, the s ize  of the Joule 

l o s s e s  is  independent of the conductivity of the p l a sma .  
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